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Preface

This document includes an introduction to THETA, compares THETA to other distributed
computing approaches, and describes some lessons learned from the current THETA develop-
ment. The document is intended to be a high-level overview. Where more detail is necessary,
pointers to the appropriate support documentation are provided.

The Final Report for THETA is intended for people who wish to acquire a general concep-
tual overview of the THETA system and the technical advancements that resulted from the
research. The report defines the terminology and the basics of secure, distributed, object-ori-
ented environments. Programming for the THETA system, administration, usage, and other
related information is provided in the supporting documentation that is listed below.

Organization of This Document

Chapter 1 contains an introduction to THETA, explaining its security philosophy, architec-
ture, and implementation. Chapter 2 provides a comparison of THETA and CORBA, and dis-
cusses the potential for a CORBA-compliant version of THETA. Chapter 3 compares THETA
and DCE, and explores approaches to integration. Chapter 4 presents a list of the accomplish-
ments of the THETA project. Lessons learned from this effort are presented in Chapter 5. Pos-
sibilities for future THETA development are outlined in Chapter 6.

THETA Documentation Set

THETA is a large system with many facets. The documentation set is split into logical parcels
as follows:

* Introduction to THETA - This document describes the THETA system, its architecture
and capabilities. It is intended to be a high-level overview.

*  Other Documents - The documents listed below contain further details on specific
topics.




Manager Developer’s Tutorial - This two volume document leads the programmer
through the steps involved in developing, testing, debugging, and maintaining a man-
ager. Volume II details the manager generation process.

Software User’s Manual (SUM) - This document describes how to interact with
THETA in a consistent and coherent manner. “Tropic” is the main application dis-
cussed in this document.

Computer System Operator’s Manual (CSOM) - This two part document defines the
role of the THETA operator and describes administrative duties such as starting, main-
taining, and stopping the THETA system; the second part is the installation guide for
THETA, which describes the general concepts of setting up THETA on a host and then
describes the different steps needed on each supported platform.

Software Programmer’s Manual (SPM) - This three volume document is a reference
for THETA programmers.

System Segment Specification (SSS) - This document discusses the various compo-
nents of the THETA system and their respective functions.

System Segment Design Document (SSDD) - This document lays out the design and
proposed implementation of the components described in the System Segment Specifi-
cation.

Software Requirements Specification (SRS) - This three volume document states the
software engineering requirements of the various THETA components.

Interface Requirements Specification (IRS) - This document outlines the various
requirements of the interfaces to the trusted computing base of the THETA system.

Software Design Documents (SDD) - This collection of documents provides details on
every software component of the THETA system down to the level of pseudo code.

Interface Design Document (IDD) - This document describes the details of the various
THETA kernel interfaces.

Software Development Plan (SDP) - This document describes the software develop-
ment cycle of THETA and its various components; it also details the software engi-
neering techniques used to ensure code correctness and maintainability.

Version Description Document (VDD) - This document specifies the version number
of THETA in terms of its functionality, platform availability, known problems, and
future work planned.

Formal Security Policy Model (FSPM) - This document contains the THETA security
policy and a formal model of that policy. It also states how the formal model clearly
maps to the actual THETA implementation.

Philosophy of Protection Report (POP) - This document contains the assurance argu-
ments used to support THETA'’s claim of B3 compliance.

vii




Descriptive Top Level Specification (DTLS) - This document describes the various
THETA components at a high level.

Covert Channel Analysis Report (CCA) - This document contains the results of covert
channel analysis of the THETA system and its individual components.

Trusted Computing Base Configuration Management Plan (TCBCMP) - This docu-
ment describes the configuration management plan for the trusted computing base
code. This configuration management plan is an important software engineering step
that facilitates version identification.

Trusted Computing Base Verification Report (TCBVR) - This document describes the
formal methods used in designing the THETA kernel and the mechanisms used to
implement the design.

Security Test Plan (STP) - This document outlines the various tests that have been run
on the THETA system to validate that the mandatory and discretionary access control
policies are being enforced.

viii




1 THETA Introduction

1.1 Executive Summary

This report provides an introduction to the Trusted Heterogeneous Architecture, which is
commonly known as THETA. This section gives a condensed description of THETA and its
key features. The remainder of the chapter explains the THETA philosophy, architecture, and
implementation in much greater detail.

1.1.1 System Overview

THETA (Trusted HETerogeneous Architecture) is a distributed, heterogeneous, secure operat-
ing system. It qualifies as an operating system because it controls access to the basic resources
of a computer system. THETA is a distributed system since it allows access to resources that
are spread across a network of systems. THETA handles the necessary translations between
disparate operating systems and hardware architectures to permit seamless interoperability to
the user and developer; thus, THETA is heterogeneous. THETA also enforces flexible, global
access control policies over the network in accordance with Trusted Computer System Evalu-

ation Criteria (TCSEC [4]) class B3; thus, THETA is secure.!

All of these features are easily provided because the system is object oriented. The complexi-
ties of security and heterogeneity are abstracted so that users can access the distributed
resources in a coherent, uniform manner. A disparate set of hardware machines can be net-
worked together, each contributing their own unique qualities and capabilities to the overall
resource pool, and THETA provides the mechanism to access these various systems in a con-
sistent fashion.

THETA is under development at Odyssey Research Associates, Inc. (ORA). Work has been
sponsored by the Air Force’s Rome Laboratory since 1985. The design of THETA is based
heavily on the design of Cronus, which is a distributed, heterogeneous operating system
developed at BBN.

' Note that THETA has not undergone the official security evaluation process; however, the system
has been designed to meet the TCSEC B3 criteria.




1.1.2 Features

Features of THETA are highlighted below.

1.1.2.1 Coherent and Uniforn_l

The THETA system provides a coherent method of accessing and manipulating distributed
processing resources. System services are available to the user through a uniform set of
abstractions. Objects such as files, directories, processes, services, and I/O devices are refer-
enced through a global naming facility and a common set of communication primitives.

1.1.2.2 Heterogeneous

Many distributed systems have evolved through the interconnection of existing stand-alone
machines of possibly different hardware and software architectures. These machines may be
connected by a local-area network (LAN) at a specific location or by a wide-area network
connecting LANs at different locations. THETA facilitates interconnection among machines
of differing architectures, which promotes the sharing of information and computing
resources between organizations and increases reliability and availability of services.

1.1.2.3 Evolvable

THETA allows an organization to keep up with new technology without rendering the old sys-
tems obsolete. New hardware can be added into the THETA network as it becomes available
with minimal effort. However, hardware that predates 32 bit architecture and dated operating
systems are problematic. Sixteen bit architecture and a lack of support for modern OS services
are high risk and costly to port. New operating systems can plug into the THETA network, but
this requires a porting effort, mainly of the Theta kernel, of about six months.

1.1.2.4 Efficient

Distributed resources are more effectively used because more resources are made available to
a larger group of users. Also, THETA services are synchronous so that time-intensive opera-
tions do not block requests and replies from other clients.

1.1.2.5 Available

Since THETA resources and services are distributed across several machines, probabilities of
service availability are higher than on a single host. In cases when a few machines are dis-
abled, the majority of the THETA system is still assessable; thus the outage may be totally
invisible to the users.




1.1.2.6 Reliable

The THETA system maintains data integrity in spite of system failures. The THETA system
allows database replication for essential data to provide fault-tolerance. Crucial information
can be duplicated across several hosts in the network so in the case of system failures and net-
work partitions, there is a greater chance that this crucial data is still accessible.

1.1.2.7 Scalable

The THETA system may be configured with different processing elements to accommodate a
range of users and applications. THETA can incrementally expand, migrate, and mutate to
meet the current demands for services and resources.

1.1.2.8 Extensible

No computer software system is ever complete; therefore, it is important to provide the means
to extend THETA in a secure way. THETA provides tools to generate clients and servers using
general purpose templates. These templates can be copied and tailored to serve new purposes.
This sort of rapid prototyping is a core feature of THETA.

1.1.2.9 Secure

The THETA system has been designed to meet the TCSEC B3 functionality and assurance

re:quirements.2 THETA enforces a consistent mandatory security policy and discretionary
access control policy; provides reliable identification and authentication of users and their
processes; audits user and system activity; and provides other distributed security services. A
high-level discussion of THETA security features is in Chapter 1.4; however, for more exten-
sive detail, see documents [30], [31], [33], and [37] that are listed in the Section "References”
on page 91.

1.1.2.10 Confidential Communication

As a distributed system, THETA must send messages and data over a network. To ensure
security, these messages over the network are protected via encryption. This network security
is provided by TNET. For details on the implementation and the extent of the protection pro-
vided, reference [39], [40], and [41].

2 Although THETA has not been subjected to an official security evaluation, it has been designed to
meet TCSEC B3 criteria. Discussion of assurance arguments to accompany the claim of B3 compliance
appear in Section 1.5.5.




1;1.3 Available Platforms

THETA has been ported to an assortment of secure operating systems as well as some
untrusted platforms. Currently supported THETA platforms are at TCSEC B1 level. Obvi-
ously, THETA does not meet the TCSEC B3 criteria when running on platforms built at levels
lower than TCSEC B3. Porting THETA to a high assurance platform is a future goal of our
effort. THETA is available on the following operating systems:

HP-UX BLS 8.09+ - This system is designed to meet the TCSEC level B1. THETA
1.5 (excluding TNET) and 1.7b (excluding TNET) run on this system.

HP-UX 8.09 - This system is an untrusted operating system and does not meet stan-
dards specified in TCSEC. THETA 1.5 (excluding TNET) and 1.7b (excluding TNET)
run on this system.

Sun CMW 1.0 - The Sun Compartmented Mode Workstation is designed to meet the
Compartmented Mode Workstation requirements, which are similar to requirements
for TCSEC B1 systems; however, Compartmented Mode Workstations have additional
criteria concerning windowing environments. See [43] in “References” on page 91.
THETA 1.5 (including TNET) and 1.7b (excluding TNET) run on this system.

SunOS 4.1.X - This system is an untrusted operating system and does not meet stan-
dards specified in TCSEC. THETA 1.5 (including TNET), 1.7b (excluding TNET),
and 2.3 (excluding TNET) run on this system..

AT&T System V MLS - This system is designed to meet TCSEC B1 criteria. THETA
1.3a (excluding TNET) runs on this system.

Trusted Solaris 1.2 - This system is designed to meet TCSEC B1 criteria. THETA 2.3
(excluding TNET) runs on this system.




1.2 Distributed Computing

1.2.1 Background

Computing technology has migrated from large, expensive, stand-alone machines to highly
specialized networks of machines composed of workstations and personal computers that far
surpass the processing power of their monolithic predecessors. The variety of hardware avail-
able today is vast and disparate. Machines differ in cost, speed, and functionality. Organiza-
tions must assess their needs to select the best mix of computing resources.

To maximize resource usage, machines are often networked together. Interconnections allow
data sharing across hosts, which saves space and allows remote machines access to processing
resources that would not be available in a stand-alone environment. These benefits do not
come for free; while gaining data-sharing capabilities, networked systems lose ground in
security. Sending data over a network creates more risks to data confidentiality, integrity, and
availability. For more information on the dangers of networking and computing in general, see
[28] in “References” on page 91.

Despite the risks of open-computing, the benefits of reduced operational costs and increased
efficiency have caused the computing industry to press on into the world of distributed com-
puting. Now, not only data is shared across platforms, but processing power is too. Today’s
computing environment consists of a network of cooperative data resources and processes.

Machines are becoming specialized to better perform their particular tasks; for example, there
are super processing machines like Cray, graphics machines like Silicon Graphics, database
machines like Teradata, and artificial intelligence machines like Symbolics. Many of these
hardware architectures are targeted to perform a special function; however, some applications
need a sampling of each machine’s capabilities. Simply networking the machines together
may not solve the processing requirements of some applications. One solution to using dis-
tributed resources is to create a single distributed application that performs a portion of its
processing on each specialized machine.

1.2.1.1 The Need for Distributed Systems

The following example illustrates the need for distributed systems. This scenario requires sev-
eral specialized hardware architectures to complete a single task. Scientists are trying to pre-
dict natural disasters in order to facilitate evacuations of the area. Weather monitoring
instruments on satellites beam down massive amounts of data to collection centers where the
raw data is processed by a supercomputer. The processed data is sent to specialized graphics
stations as it becomes available and is also stored in a database machine for future reference.
The scientists constantly monitor the data at the graphics stations. From there, the scientists
analyze the information and send out hypothetical queries to an artificial intelligence machine.
The artificial intelligence machine makes predictions of potential disasters and makes recom-




mendations on efficient evacuation procedures, which are relayed back to the scientists at the
graphics station.

Graphics Super
Station Computer

Artificial Intelligence Database
Station Machine

Figure 1-1: Sample Network for the Distributed Application Example

1.2.1.2 The Need for Secure Distributed Systems

Modifying the above example slightly, security becomes a serious requirement. Instead of
weather satellites, data is pouring in from classified intelligence satellites. The scientists are
replaced by intelligence analysts who are tracking international troop movements. The artifi-
cial intelligence system is used to predict potential military conflicts and provide logistics
planning for military invasions rather than civilian evacuations.

This scenario requires secure system communications. The data must not be compromised.
What would happen if recommendations on military tactics were intercepted? The data must




be correct. What is the impact if the satellite data was modified while being transported
between the database machine and the graphics workstation?

The THETA system could provide the secure, heterogeneous interoperability needed in the
above example. THETA encrypts network communications to protect data confidentiality.
THETA provides data replication to improve data integrity and availability.

1.2.2 Technical Hurdles

Moving from stand-alone systems to networks of distributed hosts introduces new problems
due to physical separation and heterogeneity. Some of the technical problems that have to be
resolved are:

Naming and identification of network resources. For processes to reference a resource
in an access request, there must be some kind of common naming policy among the
network hosts.

Protection and access control of resources. Permitting remote access of resources now
requires remote authentication and authorization.

Data translation issues resulting from heterogeneous data encodings and data repre-
sentations. Sharing data across different hardware architectures surfaces a new need
for a translation layer between common external data representations used in network
messages and local internal representations of data. For example, some machines
organize bytes differently, some use “most-significant-byte first” and the others use
“least-significant-byte first”; without a translation layer, all data transferred between
these hosts would be garbage. Another more abstract example would be if two systems
have different representations of a data file; a translation layer can provide the neces-
sary mutations to allow sharing the file object between the two hosts.

Message based interprocess communication (IPC). IPC for remote processes needs to
be message based since memory sharing is not practical between distributed compo-
nents in most heterogeneous systems.

Service and resource structures need to be remodelled for remote accesses. Interfaces
for important resources need to be clearly defined and may require redesign.

Errors and error recovery. Problems with distributed accesses are more difficult to dis-
cern since there are more sources of errors and more components to the system. Also,
error recovery actions may not be so clear.

Maintaining data consistency among multiple copies of data. To improve data avail-
ability and survivability, it is common practice to keep a few copies of data on differ-
ent hosts in case one host is unavailable at a crucial moment; however, it becomes
more difficult to synchronize data modifications among all of the copies.




* Synchronization and control problems. The state of the system is distributed and lock-
ing up each host in order to get an accurate snap shot of the system is not always feasi-
ble.

¢ Accounting and administration issues. In a network, each host is controlled by a differ-
ent administrator. Each of these administrators must cooperate for successful interop-
erability.

* Verification, debugging, and performance measurement. These issues are more com-
plex.

Despite this long list of concerns, it is not complete. Though it appears daunting, these prob-
lems are mitigated through the use of layering, abstract objects, and message passing.

1.2.3 Layering and Abstractions Ease the Burden

Distributed computing is difficult. Dealing with the details of every different system can be
overwhelming. As complexity of a computer system increases, the necessity for abstractions
also increases. A modular, layered design removes the details of a particular system’s internal
structures, mechanisms, encodings, and algorithms.

Complex systems can be broken down into logical units that are more easily understood. Each
unit needs to be clearly defined in terms of the resources that it controls and the interfaces that
allow access to those resources. This modular approach has the following advantages:

* alternate implementations of a unit can coexist,

* unit modifications are less noticeable to entities requesting resources (unless the
changes were made to the unit’s interfaces), and

* verification, debugging, and testing is much easier on a per-unit basis than on a large,
complex system.

Abstractions that define information in terms of data characteristics and methods of accessing
that data are often called objects. In the following chapter, we define and describe objects and
object models. In Chapter 1.4, we describe THETA’s layered architecture that implements its
object model.




1.3 Object Model

Distributed systems are hard to design and build. Support for high-level abstractions helps
disperse the difficulties inherent in distributed programming. An object oriented paradigm
hides the internal complexities and differences of network resources and provides a uniform
interface to all data objects in the system.

An object model defines all activities in terms of accesses on objects. For example, when log-
ging in to a system, the user is not interacting with the login daemon; rather, the user is per-
forming the operation “login” on the object “console”. Or perhaps, embellishing on the
concept of abstraction, a user could be considered to be performing the action “open” (that is,
login) on a “door” (the user’s account) to a “room” (the console) using a “key” (the user’s
password). Object models exploit a powerful metaphor to make systems easier to conceptual-
ize.

1.3.1 What Is an Object?

object 1

methods

subject

object n

methods

Figure 1-2: THETA Object Model

Objects are abstractions of resources like processors, memory, and devices. An object is a
combination of data and methods used to access that data. Figure 1-2 depicts a subject, which
in THETA is a principal or group, accessing an object’s data through the methods defined for




the object. We refer to methods of manipulating an object as operations. Subjects cannot do
anything to an object unless the action is through a defined operation.

Objects can be accessed only by invoking operations on them. THETA users (that is, princi-
pals) start client programs to issue such invocations. Operations are implemented by object
managers. A manager hides the internal representation of the objects it manages, and provides
a precisely defined interface to these objects. Some or all of the internal representations of a
manager’s objects are stored in an object database (ODB).

1.3.2 Object Types

All THETA resources are organized into groups of objects that have similar characteristics.
All objects with the same characteristics are said to be of the same object type. When an
object type (or simply, a type) is defined, the developer specifies the common characteristics
of a type, which include the data structures in the object, the operations that can be performed
on objects of this type, and the rights needed to invoke the operations successfully. Figure 1-3
shows a sample operation definition from the Set type specification file. In the example, we
define the operation ShowSet to have the input parameter SetName and the return data Set-
Cont. The access control checks are also stated. The MAC check is “mac test read’, which
means the subject invoking the operation must dominate the level of the object being
accessed. The DAC check is specified in the line “requires view”. This requirement states that

generic operation ShowSet mac test read
(SetName:ASC;)

returns

(SetCont:SET_CONTENTS;)

requires view;

Figure 1-3: Example Operation Signature from the Set Object Specification

the invoking subject must have the view right on the Set generic object1 to successfully per-
form the operation ShowSet. For more information on type specifications and operation decla-
rations, see the Manager Developer Tutorial for THETA, Volumes I and II [32].

1.3.2.1 Subtypes and Inheritance

THETA types are hierarchical. Each type, with the exception of root type, Object, has exactly
one parent. An object type inherits the attributes defined for the parent type and all other
ancestral types. As shown in Figure 1-4, all types inherit the data attributes and operations that
are defined for the ancestor type Object. Notice that Directory objects also inherit attributes

! Generic objects are explained more in Section 1.3.2.4.

10




Object

AR

Primal Process Audit Record

THETA File Lookup Object

Directory

Authentication Object

— N
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Figure 1-4: Portion of the THETA Type Hierarchy

from the Lookup Object type as well.The Lookup Object type is a subtype of Object, and
Directory is a subtype of Lookup Object.

Inheritance is the mechanism used to share type descriptions among several distinct types that
have some similar attributes. The common attributes are defined in the parent type, or some

other ancestor type. Operations defined for ancestor types do not need to be rewritten for sub-
types; thus, inheritance promotes code-reuse.

1.3.2.2 Styles of Types

Each manager of an object type has a strategy for maintaining the databases. This strategy
depends on the style of the type. In THETA, there are four type styles:

11




* ancestral - Ancestor types allow common data structures, operations, and other object
attributes to be declared in one type specification file, yet these types can be imported
and used by other types. See Section 1.3.2.1 for a description of inheritance and hier-
archies.

* primal - Primal types are types whose objects have meaning only on the system where
they were created. For example, a memory address on one machine does not refer to
the same information as a memory address on some other machine; thus, memory
addresses are primal. Primal objects must remain on the machine where they were cre-
ated because that is the only machine where the data makes sense.

* distributed - Distributed types can have objects that reside on several hosts; however,
the manager of the type does not enforce any data consistency rules. For example, say
we have a distributed type File. If we copy a file object named Original from host A to
host B, and then edit the copy on host B, the two files are no longer identical, yet they
have the same name.

* replicated - A replicated type has objects that have copies of the object image on sev-
eral hosts. When a replicated object is created or modified, all copies are updated so
that the collective object database across the network remains consistent.

1.3.2.3 Object Instances

Each object that is a member of a type is called an instance of that type. Operations can be
performed on specific objects or the entire class of objects. A client must make it clear which
object is the target of the operation. To distinguish the target when invoking an operation, the
client must supply the identity of the exact object instance that is to be accessed. Object iden-
tification is discussed further in Section 1.3.3.

1.3.2.4 Generic Objects and Generic Operations

A generic object is a single object that represents the class of objects of a type. The kinds of
operations that are usually declared for the generic object of a type are create, delete, and
search. In THETA, there is only one generic object per type per security level. The example
shown in Figure 1-3 defines a search operation on the Set generic object.

1.3.3 Object Identification

THETA provides a global and location-transparent way to identify objects. By global, we
mean an object name can be issued from any location to uniquely identify an object anywhere
on the network. By location-transparent, we mean an object’s location is not encoded directly
in the object name.

12




There are two kinds of names for THETA objects: unique identifiers and Directory objects.
The Unique Identifier (UID) is a machine-generated name; the Directory object is a user-
selected symbolic name. Each THETA object has a single UID, which is stored with the
object and is bound to the object at object creation time. A sample UID may look like
{192.76.175.200:4:9:#UNCLASSIFIED: Principal}. The UID’s awkward external representa-
tion is due to optimizations made for internal handling by the machine.

Identifying objects via their UIDs is not very intuitive for most users. Users typically want to
refer to objects using symbolic strings that are meaningful to them. The Directory Manager
provides a distributed and replicated service that maintains a mapping between user-defined
symbolic names and system-maintained UIDs. The Directory type provides a hierarchical
naming structure. An example of a symbolic name is: a:b:c where a and b are subdirectories
and ¢ is the object being referenced. Directories in this path are non-decreasing in security
level. See the Software Design Document (SDD) for the Directory Manager [34] for more
details on using a Directory object to reference another object.

A THETA object is not required to have a symbolic name. An object may have no, one, or
more then one symbolic name. If there is no symbolic name for an object, the object must be
accessed using its UID.

1.3.4 Object Replication

THETA provides reliability and availability by supporting replication of objects at multiple
sites. A replicated object is one for which more than one copy is being maintained, and the
replicas reside on more than one host. Each replica of the object has the same UID. The object
may be accessed through a manager on any of the hosts where it resides.

Data consistency of replicated objects is maintained by the version vector scheme (see [22] in
“References” on page 91). The classic problems of availability and consistency are resolved
by allowing read and write quorums to be set for each replicated type at type definition time.
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1.4

THETA Architecture

THETA uses a layered architecture to implement the object model, which is discussed in
Chapter 1.3. The THETA clients, managers, and kernel are implemented on top of an existing
secure Constituent Operating System (COS). THETA has two major design goals with respect
to COS systems. First, THETA must be incorporated into the host system without modifica-
tions to the COS. Second, THETA must be able to operate on a network of heterogeneous

hosts.

A COS must meet TCSEC B3 security and assurance requirements for the THETA system to
be B3. The following features are expected of the COS:

Assured process separation - MAC, DAC, and user and process identification mecha-
nisms of the COS control all direct interprocess communication (IPC). No IPC mecha-
nisms are permitted to override these checks.

Non-interference with process operation - No untrusted process is permitted to inter-
fere with THETA processes responsible for security. As stated above, the COS mecha-
nisms that enforce non-interference are MAC, DAC and user and process
identification.

Stable storage - The COS file system, file permissions, and COS MAC labels protect
the data needed for enforcing security and for maintaining object databases.

IPC support - THETA IPC primitives and protocols rely on trusted path, local IPC, and
TCP/IP facilities of the COS.

Device support - COS device drivers are used for device support.

1.4.1 THETA Components

The THETA object model is implemented in layers. A simplified view of the hardware and
software components of the THETA system is depicted in Figure 1-5. The major pieces are

Constituent Operating System
Network software and hardware
THETA kernel

THETA managers

Objects

THETA clients

In the diagram, the THETA kernel does not completely obscure access to the COS. The pic-
ture is drawn this way on purpose to stress the fact that THETA managers, clients, and users
can still interact directly with the COS if desired.




manager

THETA Kernel THETA Kernel
COS COS

objects

COS
THETA Kernel

Figure 1-5: Implementation of the THETA Object Model

1.4.1.1 Constituent Operating System

THETA provides abstractions of system resources for higher level applications. These
abstractions must eventually map to some real system resource like processors, storage, and
devices. The COS is the true controller of these real system resources. THETA interacts with
the COS to manipulate the THETA objects (which are abstract views of real system resources)
in the manner declared in the object type specifications. THETA relies on the system calls of
the COS to be implemented correctly and for the COS security mechanisms (MAC, DAC,
privilege schemes, etc.) to be enforced on those system calls.
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Consult the vendor-supplied documentation for more information about the security mecha-
nisms, their implementation, and the assurance arguments for the COSs on a THETA network.

1.4.1.2 Network Software and Hardware

For THETA to be a distributed system, it must operate over a network. THETA relies on the
network hardware of each machine (the Ethernet cards, the cables, the routers, etc.) and on the
software and configuration files that implement the protocol.

As a networked service, rogue processes may snoop data transmissions that are sent over the
network. To combat this threat, THETA implements its own packet encryption of messages.
When secure networks and secure protocols become more stabilized and more readily avail-
able, we will remove encryption from the THETA processes and rely on secure COS network
services.

1.4.1.3 THETA Kernel

The THETA kernel is responsible for authenticating COS users and their associated processes,
registering those processes, enforcing MAC checks on IPC messages and replies, supplying
location-transparent access to objects, message forwarding, and message upgrading.

Currently, there are two different implementations of the THETA kernel. Their architectures
are different enough that it is beyond the scope of this introduction to discuss them here. Con-
sult the Software Design Document (SDD) for the THETA Kernel [34] for details on the two
architectures, their components, and their interactions.

14.1.4 THETA Managers

For each object type, there is a THETA manager that regulates accesses to the object instances
of the type. When clients invoke operation requests on objects that are regulated by the man-
ager, the manager first verifies that the request passes all MAC and DAC checks. If the request
is valid, the manager accesses the object database that is maintained in secondary storage on
the local host. The THETA manager relies on COS mechanisms like file ownership, group
ownership, file permissions, and MAC labels to protect the object database from being
accessed outside of THETA interfaces.

When a manager is created, a Program Support Library (PSL) of operation function calls is
generated. This library contains the code that client programs should use to invoke operations
on objects of a given type.

For details on the components and workings of the THETA managers, consult the Sofiware
Design Document for THETA [34].
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1.4.1.5 Objects

As stated in the previous chapter, an object contains data and the methods used to access that
data. In THETA, we often refer to the data portion of the object as the object itself. THETA
objects are kept in object databases (ODBs) on COS file systems. COS and THETA mecha-
nisms protect the data from improper accesses.

14.1.6 THETA Clients

THETA clients use the common interface protocols defined in various PSLs to invoke opera-
tions on objects. A client can use the services of several THETA managers that reside on sev-
eral nodes on the network without knowing the details of object location or data
representation. The managers and kernels mask the complexities of the object away from the
client and user so that the system is easier to program and easier to use.

1.4.2 THETA Communications

In a distributed, object-oriented system, client processes access information by sending
requests to manager processes. To the client, data accesses are simple. The THETA client
needs to get input, prepare the THETA operation, invoke the operation via the PSL routines,
wait for the response, and process the output. The only THETA-specific step is the PSL call
that provides location-transparent access to the requested objects. PSL is a synchronous com-
munication request; however, the client program can be written to use the lower communica-
tion levels within the PSL to achieve asynchronous processing. '

Figure 1-6 shows the path of the PSL call through the THETA system. The diagram is very
simple. The first step of the PSL call is to register with the THETA kernel. The kernel verifies
the identity of the user who is running the process. If the user is known in the THETA config-
uration, and the MAC level of the invocation is within the range of the user, registration suc-
ceeds. After successful registration, the PSL sends the invocation request on to the kernel; part
of the request must indicate the UID of the target object, which also specifies the type of the
object. To process the request, the kernel must determine which manager controls objects of
this type and where a manager (at the chosen MAC level) is running on the network. The ker-
nel sends out a locate request to the other kernels on the network to find a manager service at
the appropriate level. Each kernel checks to see if it can service the locate request. If it can, it
responds to the original kernel with a found message. The original kernel then sends the PSL
call on to the kernel that had the service available. The remote kernel passes the request on to
the manager. The manager performs any DAC checks that may have been specified for the
operation. If the user that invoked the request from the remote client has the necessary privi-
leges, the manager processes the request and sends a reply back to the kernel. This kernel for-
wards the reply to the original kernel who then sends the information back to the client.
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1.5 Security Policy

The THETA security policy is stated in the Software Requirements Specification for THETA
[35] and formally addressed in the Formal Security Policy Model for THETA [31]. However,
we briefly cover some important aspects here. The security policy for THETA adheres to the
specifications described by the TCSEC for level B3 systems. The policy can be categorized
into the following:

» A discretionary access control (DAC) policy that is designed to restrict operations on
data objects according to the identity and privileges of the client.

« A mandatory access control (MAC) policy that controls the flow of information
according to the security levels of client and object.

e Some additional policy rules that define the security configuration, guarantee of
trusted paths, etc.

The MAC and DAC policies are clearly separated. In fact, they operate at different granulari-
ties in the object model. The mandatory policy is enforced largely at the message passing
level. The discretionary policy is enforced at the object level. The MAC and DAC policies
state global constraints for the entire system rather than for individual hosts.

In all secure systems, the amount of code that performs trusted operations should be kept to a
minimum. In THETA, the kernel performs trusted operations. All THETA system managers
contain trusted code. In general, any MLS manager has trusted code regardless of whether it is
provided as part of THETA or by the user. The reason for this is that the ACG automatically
generates trusted code so that the manager can be run at single level or MLS. In THETA, the
system relies on the constituent operating system (COS) security mechanisms whenever pos-
sible to enforce the security policy rather than duplicating code.

1.5.1 Mandatory Access Control

A distributed operating system mandatory policy must be defined in terms of message passing
between active entities, rather than the traditional Bell and LaPadula read and write operations
of an active entity on a passive entity. In THETA’s object-oriented paradigm, data is accessed
through a well-defined set of methods. When a subject wishes to perform some operation on
an object, the access request is sent as a message from a client process (acting on behalf of the
subject) to a manager process. So, the object is not a passive entity; it can be accessed only by
making regulated requests to the managing process, that is, via messages.

The THETA MAC policy has two components:
¢ Rules for message passing to prevent direct downgrade of information.

» A policy for multilevel entities to prevent compromise of information via covert chan-
nels.
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The multilevel security policy is based on a theory of information flow security developed at
ORA. This theory is detailed in [13] and [11]; however, we provide a brief description below.
The policy defines information flow in terms of deductions that can be made about unseen
(higher security level) events in a system’s history. This policy is called “restrictiveness”. The
restrictiveness policy defines security as follows: a system component is secure provided it
does not allow information to flow from high security levels to lower ones.

1.5.1.1 MAC Labels of Subjects and Objects

In order to enforce the mandatory access control policy, the THETA system must compare the
MAC label of the invoking process with the MAC label of the target object. The MAC tests
are dependent on the type of operation. A process may view an object that is at or below its
level, and a process may write to an object that is at or above its level. MAC labels of pro-
cesses and objects are set at the time they become “known” to THETA.

When a process registers with the THETA kernel, the process is “stamped” with the identity
and security level of the user who started the application. If the process is started over a range
of levels, there is one “currently active level” that is within the range and all invocations are
marked with the MAC label of this active level.

A THETA object is created when a successful create invocation is processed by the manager.
The create invocation is a message, which comes into the manager at a single MAC level
from a registered THETA process. The manager creates the object at the MAC level of the
create message. The MAC level becomes part of the identifier of the object, and the object is
fixed at that level for the duration of its existence.

1.5.2 Discretionary Access Control

Since object managers are the entities that implement operations on objects and DAC restricts
operation executions, all THETA managers enforce discretionary access control on their
objects. As a part of each object, an access control list (ACL) is maintained to indicate which
users may perform what operations on that object. The DAC policy is necessarily object-
dependent since operations and their semantics vary according to their type.

1.5.2.1 Access Control Lists

As stated above, every object has an access control list. An ACL is a list of subjects! and their
corresponding access rights to the object. Just because a subject has access rights on an object
does not mean that the subject can perform any arbitrary action on the object. Accesses are
restricted as part of the definition of a type. Every object is a member of some type, and as part

! In THETA, subjects are principals and groups.
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I

has the necessary privileges.

of the definition of a type, the operations that can be performed and the rights required to
invoke the operation are specified. Therefore, a subject that is attempting to access an object
using a particular method must have the access right required to perform that operation.

To clarify, for each operation, the required privilege is specified as part of the signature of the
operation. An ACL contains a list of subjects and their access rights for a single object. When
a subject invokes an operation, the operation signature is consulted to determine what access
rights are needed, and then the ACL of the object is checked to see if this particular subject

subject

* " other data of the
object instance

access control list

access rights

fred

modify

ann

read, write

staff_group

view

all groups specified in the AGS.

1.5.2.2 Access Group Sets

Figure 1-7: An Access Control List within an Object Instance

An access group set (AGS) is a principal and a list of groups that have that principal as a
member. The principal (and any processes that the principal starts) inherits the access rights of

21




1.5.2.3 Process Bindings

When a principal starts a process that registers with the THETA kernel, the process is bound
with the AGS of the principal. By bound, we mean that the access rights of the process are
restricted or bound by the value of the AGS.

1.5.3 Other Forms of Access Control

More restrictive access control schemes like “unique operator”2 requirements can be enforced
in the operation code within a manager. Security checks in the operation code must be added
by the developer. Note that the security checks can become more restrictive only by adding
code to the manager operations. THETA MAC and DAC checks cannot be overridden.

1.5.4 Encryption

THETA operates over a network and is therefore subject to the standard risks of networking.
One of the main threats operating over a network is wire-tapping. To combat this risk, THETA
provides encryption of datagrams that are sent over the net. For more information about the
trusted networking capabilities, see [39], [40], and [41].

1.5.5 Assurance Arguments

THETA has a layered trusted computing base (TCB) consisting of a message TCB and an
object TCB. The TCB size depends on how the administrator configures the system. There is
a trade-off of assurance versus trusted application flexibility. To meet B3 criteria, only the
message TCB can run multilevel.

Despite THETA'’s long existence, there are still no standards for evaluating secure, distributed
operating systems. We have had to interpret the TCSEC and the TNI to forge our own criteria.
As aresult, THETA’s approach to security engineering has combined traditional, conservative
methods with more liberal, experimental practices. We have tried for the best of both worlds,
and we have had considerable success.

The THETA kernel development emphasized the traditional approach. It implements the basic
functions of the Cronus kernel, but is completely redesigned and reimplemented. The code
that is trusted is minimized. Sizes of the various kernel components are detailed in the Com-
puter Systems Operator’s Manual for THETA [29].

2 “Unique operator” requirements come up in various separation of duty scenarios. For example, in a
banking scenario, a check may need to be signed by two unique supervisors before it can be cashed.
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Figure 1-8: THETA Trusted Computing Base Boundaries

The THETA manager development focuses on trusted extensibility, which is the idea that
THETA may be developed and adapted to new applications by adding new trusted software.
Several managers, trusted and untrusted, have been autogenerated for the fielded THETA sys-
tem. New managers may be created by users and installed in THETA at any time.

The key THETA advance is the structuring of the manager autogeneration process to simplify
the arguments that must be made for security assurance of new trusted managers. Trusted
extensibility is discussed more in Section 1.5.6 below.
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Running a manager as a multilevel process does increase the amount of trusted code, which
may not always be acceptable. THETA managers are designed so they can be run either as
untrusted, single level managers or as trusted multilevel managers. Changing from one to the
other is a mere matter of getting the THETA operator and THETA administrator to shut the
system down, adjust a configuration file, and re-boot. Despite this simple procedure, managers
should not be run across multiple levels unless the code has been carefully written, inspected,
and rigorously tested.

THETA is actually two systems in one:
* the trusted THETA, which includes the kernel and the suite of MLS managers;

* the development THETA, which includes untrusted autogeneration tools for creating
new MLS and MSL managers and an untrusted universal application interface.

The development tools are not themselves trusted, because the trusted managers they produce
are subject to manual inspection and testing before delivery. However, there is the possibility
of having trusted manager development tools in the future.

Assurance of THETA’s multilevel security is based on a formal security policy called restric-
tiveness. Restrictiveness limits the ways in which information can flow within a system, and
when applied to multilevel security, it prohibits information flow from high security levels to
lower ones. In the restrictiveness policy, information flow is defined in terms of facts that can
be deduced based on observations of a system’s behavior.

THETA is unique in its use of restrictiveness in its security policy. This choice of policy has
several advantages.

* An information flow policy is superior to access control policies (e.g., Bell-LaPadula)
in that it provides a framework for discovering covert channels.

* Restrictiveness is superior to most information flow policies in that it offers compos-
ability: communicating restrictive components form a restrictive system. This property
is essential for security analysis of distributed systems.

Two restrictive (that is, secure) subsystems can be hooked together to form a larger restrictive
system. The THETA policy requires the THETA TCB to be restrictive. Since restrictiveness is
a composable property, it is sufficient to demonstrate that the components of the TCB are
restrictive. The fact that security verification can be decomposed in this fashion is a tremen-
dous advantage when trying to build a distributed secure system such as THETA. Compos-
ability can also be exploited to add multilevel services and hosts to a distributed system in a
secure manner without the need for re-verification of the entire system.

We used Romulus (a tool developed at ORA) to formally model and prove the restrictiveness
security properties of the THETA kernel. Previously, ORA developed techniques for demon-
strating compliance with restrictiveness using the Gypsy Verification Environment (see [42]).
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1.5.6 Secure Extensions

As new types are defined and new managers and clients are built, the THETA system is
extended. It is important that extensibility be a simple exercise that does not compromise
security.

The mandatory policy constraint on information flow is that the THETA system be restrictive.
Processes outside the TCB are at a single-level and therefore are trivially restrictive. Because
restrictiveness is composable, it is sufficient to show that every component of the TCB is
restrictive.

The key problem for secure extensibility is guaranteeing that new MLS managers added to the
system are restrictive. Managers are usually complex software. It is legitimate to ask: why
should any manager be part of the TCB? This question has been considered in [24]. The
advantages of having some MLS managers are increased efficiency and greater functionality.
The efficiency is gained at the cost of assuring that software added with new managers
enforces the THETA security policy.

A large portion of a manager’s functionality is independent of the types managed. So, a signif-
icant amount of a manager’s design and implementation is invariant over types and can be
reused. If a manager was generated using the ACG tools, only the type-specific functionality
would need to be supplied by the manager programmer, and thus, only that newly supplied
code would need to be verified. For example, the security and audit checks required for spe-
cific manager operations are autogenerated. The assurance of security is then divided between
the manager generation tool, which is a one-time assurance effort, and the manager opera-
tions, whose assurance must be determined on a manager by manager basis.
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1.6 Object Managers

An object manager is a process that controls a database of objects of a given type (or types)
and regulates the accesses made on objects of that type. Clients access objects by making
requests to the manager of the object type, and the manager then honors or denies the request
depending on the access rights of the client and the rights required to perform the operation.

1.6.1 Tools for Generating Managers

THETA provides the programmer with a set of tools for manager generation. The programmer
creates a type specification and a manager specification. The specification files are then pro-
cessed by the manager generation tools. Successful processing produces several files of code
that make up an object manager skeleton. The skeleton implements message packing and
unpacking, conversion from canonical to internal representations of data and vice-versa, man-
datory and discretionary access checks that may be necessary for an operation, and many
other routines common to most managers. To finish implementing a manager, the programmer
fills in code for the specific operations that the manager supports.

These tools have been used to generate all THETA managers.

For extensive detail about the specification grammars, the autogeneration process, and the
generated code, see the Manager Developer Tutorial for THETA, Volumes I and II [32].

1.6.2 System Managers versus Application Managers

Managers are often classified according to the type of object managed. THETA defines a
small number of types likely to be of importance to every application. These types are some-
times called system types, to distinguish them from other types that can be added by THETA
developers. System managers control system types and application managers control other
non-essential types. There is no fundamental difference between system and application man-
agers; the distinction is in the role they play in the system rather than any implementation dif-
ference. More specifically, application managers may assume the existence of system
managers.

1.6.3 Security Range Options

A manager may run in a single level or across a range of security levels. A single-level man-
ager manages objects only at its security level and is implemented as a single-level process. A
multilevel object manager can handle operations over a range of security levels. A multilevel
manager may be designed as a single multilevel secure (MLS) manager process or multiple
single-level (MSL) manager processes. If it is implemented as a MLS process, then the man-
ager is part of the mandatory TCB and is trusted to perform mandatory access checks.
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When a service is needed across levels, should the manager be multilevel or multiple single
level? There is a fundamental difference between the two approaches. The MLS manager is
trusted, and it can, therefore, enforce a security policy different from that of the constituent
operating system. The MSL managers, on the other hand, are bound by the COS’s security
policy.

When installing a manager service into the THETA system, the THETA administrator and site
security officer must assess the functionality desired against the trade off of increasing the
TCB size. Installing a manager to run across many security levels as a single process increases
the size of the TCB; however, installing a manager to run at several single levels limits the
capabilities of the manager and uses more system resources. With the introduction of each
new service, the system administrators must weigh the consequences of each type of installa-
tion and decide which is best on a per-manager basis.

Because objects of the system types will most likely be used by clients at all levels, THETA
system managers are implemented as multilevel services. As a part of the TCB, these MLS
managers must undergo the necessary certification procedures.

1.6.4 System Managers

Below, we briefly highlight the features of the current THETA system managers.

1.6.4.1 Audit Manager

The Audit Manager collects information about the actions of all THETA processes, including
the managers, clients, and the kernel. Audit data is used to detect and locate attempts to cir-
cumvent the THETA security mechanisms.

Every secure system starts with the intention to prevent security compromises by imposing a
sufficiently strict security policy and by implementing that policy correctly. However, for
practical reasons, this intention is not always realized. The security policy may be inaccurate
or inadequate for reasons not originally foreseen. Programmer oversight may cause the policy
not to be implemented exactly. Small compromises (e.g., covert channels) may be tolerated to
improve performance or to give more functionality. Whatever the reason, sometimes system
security is breached; therefore, it is wise to have an audit trail to track attempts to penetrate
the system. Penetration attempts typically rely on unusual circumstances and actions to defeat
a system’s security mechanisms; the attempt can be detected if these circumstances and
actions are noticed.

THETA is a distributed system, and attempts to defeat its security may involve actions at
many different locations. To detect a penetration attempt, it is best to collect these distributed
events at a single location where they can be analyzed as a complete, synchronous list of
events. The THETA Audit Manager is responsible for maintaining the audit repository.
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What actions are deemed “security relevant” and require auditing? Each THETA manager
must decide which of its operations are security-relevant, for which values of its arguments,
and for which kinds of reply. The level of auditing is determined by the THETA administrator
when a manager is installed. However, this scheme is very static and doesn’t allow for any
trouble shooting during runtime, i.e., if the administrator notices some activity warranting fur-
ther investigation, he has to reinstall to get a finer grain or change any of the audit parameters.
Managers send the Audit Manager data as THETA invocations on the generic object of type
“Audit”. ‘

When are audit events sent? We have made the basic design decision that the Audit Manager
will not solicit audit reports, but will depend on the managers to send them accurately and
promptly.

For more detail on the specific operations, see the Software Design Document (SDD) for the
Audit Manager and the Manager Skeleton [34]. The SDD for the Audit Manager describes the
data types and operations that are particular to the audit services. The SDD for the Manager
Skeleton details data types and operations that are common to all managers.

1.6.4.2 Authentication Manager

The Authentication Manager, also designated authen, manages five types, listed here with
their abbreviations: Principal (prin), Group (group), THETA AccessGroupSet (thags), Regis-
try (reg), and. Authentication Data (acdb). These types and operations directly or indirectly
support THETA discretionary access control policy.

Principals. THETA principals loosely correspond to user names in traditional operating sys-
tems. A Principal object is maintained for each legitimate THETA user. When a COS user
launches a THETA process, THETA kernel configuration files are consulted as well as other
databases, and the COS user is authenticated. Part of the authentication process is to map the
identity of the COS user to the identity of a THETA principal.

A principal can never have more than one COS user per host; however, a principal may have
no COS user counterpart for a particular host in the network. The THETA system administra-
tor is responsible for maintaining this information. See the Software Design Document (SDD)
for the Kernel [34] and the Computer System Operator’s Manual for THETA [29] for details.

Groups. A THETA group is a collection of principals and other groups.

Access Group Sets. An access group set is a set of groups that a principal wants enabled. In
other words, even though the principal may be a member of several groups, the user may want
membership only in a particular subset to be active for purposes of DAC. A principal’s access
rights on objects are determined by the active group memberships, that is, the access group
set. For an in-depth discussion on DAC checks, see the Software Design Document (SDD) for
the Manager Skeleton [34].
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Registry. The THETA Registry type supplies an easy way to reference principals and groups.
There are no objects of this type and the generic objects of type principal and group are used
to store the name spaces. This type is used to supply a set of operations that manipulate the
principal and group name spaces.

Authentication Data. This data type is maintained for backward compatibility to Cronus; it
serves no purpose in the THETA system.

For more detail on the specific operations, see the Software Design Document (SDD) for the
Authentication Manager and the Manager Skeleton [34]. The SDD for the Authentication
Manager describes the data types and operations that are particular to the identification and
authentication services. The SDD for the Manager Skeleton details data types and operations
that are common to all managers.

1.6.4.3 Automatic Code Generator

The Automatic Code Generator (ACG) Manager (formerly Type Definition Manager) is a tool
for developers to generate (possibly multilevel) managers. Programmers write specifications
for the object type and the manager that will regulate access to that type, and then process
those specifications by making invocations on the ACG. Successful processing of the specifi-
cation files produces a skeleton of code that the programmer must then tailor by adding code
to implement operation semantics. For extensive detail about the specification grammars, the
generation process and autogenerated code, reference the Manager Developer Tutorial for
THETA, Volumes I and II [32].

For more detail on the specific operations, see the Software Design Document (SDD) for the
Automatic Code Generator Manager and the Manager Skeleton [34]. The SDD for the Auto-
matic Code Generator Manager describes the data types and operations that are particular to
the manager generation services. The SDD for the Manager Skeleton details data types and
operations that are common to all managers.

1.6.4.4 Configuration Manager

The THETA Configuration Manager is designed to store information about nodes on the
THETA network and the manager services that are available on those nodes. The purpose of
the Configuration Manager is to provide the THETA administrator a useful tool for managing
the network and THETA services.

The Configuration Manager manages three types: Host_Configuration, Service, and
ActiveServiceList. Host_Configuration objects contain information about the hosts on the net-
work. Such information would include hostname, Internet address, and the hardware architec-
ture of the host. Service objects contain information about the managers that are installed on
the network. Such information would include the manager name, the types managed, and
whether the manager can be run across multiple levels. ActiveServiceList objects contain

29




information about all currently registered managers that are available on the network. This
data includes the names of the managers, what hosts they are running on, and at what security
levels.

Each network of THETA hosts needs only one Configuration Manager; however, if there is
more than one instance, the data must be kept consistent across all platforms. To maintain data
coherence, all types managed by the Configuration Manager are replicated.

The Configuration Manager monitors information about the state of the THETA network and
keeps that information in a database. This information may be useful to other processes like
the Primal Process Manager, in order to perform actions such as automatically starting a man-
ager process at a particular level on a certain host. The THETA Operator may also query the
databases to get a view of the services available on the network.

The THETA Operator has another more user-friendly tool available, known as dream, that
monitors the state of the THETA network. The dream application is a graphical application
that allows the Operator to monitor and control the THETA processes on the network through

“point-and-click” and “drag-and-drop” actions.! The information from the dream application
is not stored in databases, and ceases to exist when the application is exited.

For more detail on the specific operations, see the Software Design Document (SDD) for the
Configuration Manager and the Manager Skeleton [34]. The SDD for the Configuration Man-
ager describes the data types and operations that are particular to the THETA network config-
uration services. The SDD for the Manager Skeleton details data types and operations that are
common to all managers.

1.6.4.5 Directory Manager

The Directory Manager provides a hierarchical name-space for THETA objects. The name-
space is organized into directories and directory entries in a similar fashion to that of the
UNIX file system, except that any object, not just files, can be named. A directory object con-
tains entries associating symbolic names with arbitrary object UIDs, but it can also contain
entries that associate names with other directory objects known as “subdirectories”. All direc-
tory objects managed by the Directory Manager are connected together in this fashion into a
directory tree with a single “root” directory. The unique full name, or “pathname”, of an
object then starts with the name of the root directory and includes the names of all the subdi-
rectories that are part of the “path” between the root directory and the entry for the named
object. A “relative pathname” starts in some non-root location (the “current” directory) and
ends with the name of the object. If the directory entry for the object is contained in the cur-
rent directory, the relative pathname becomes just the object name itself.

! The dream interface is documented in the Computer System Operator’s Manual for THETA [29].
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An example of a full pathname could be “:usr:theta:object_1". In this pathname, “usr” is the
name of a directory, “theta” the name of a subdirectory of “usr”, and “object_1" is the name of
an arbitrary THETA object that is represented by an entry in directory “theta”. The colons,
except the first one, are separators used to keep the names in the path distinct. The leading
colon, by convention, represents the name of the root directory, “:”, so “usr” is actually a sub-
directory of the root directory, which can in turn be thought of as a subdirectory of the generic
directory object. Directory Manager generic operations operate on the root directory.

For more detail on the specific operations, see the Software Design Document (SDD) for the
Directory Manager and the Manager Skeleton [34]. The SDD for the Directory Manager
describes the data types and operations that are particular to the THETA cataloging services.
The SDD for the Manager Skeleton details data types and operations that are common to all
managers.

1.6.4.6 Primal Process Manager

The THETA Primal Process Manager is designed to provide information about processes that
have registered with the THETA kernel. A successful registration leads to the creation of a
primal process object on the host on which the process registered. COS processes are not
migratory entities in THETA, and so the primal process objects created to represent them do
not migrate either. Primal process objects contain the data that prevents repudiation of actions
recorded in the audit log. In particular, the identity of the COS user that started a process that
caused audit events can be learned only by obtaining this information from this manager.

For more detail on the specific operations, see the Software Design Document (SDD) for the
Primal Process Manager and the Manager Skeleton [34]. The SDD for the Primal Process
Manager describes the data types and operations that are particular to the tracking services for
local THETA processes. The SDD for the Manager Skeleton details data types and operations
that are common to all managers.

1.6.4.7 THETA File Manager

The THETA File Manager implements a file system for THETA file objects. This manager is
responsible for managing objects of type “Theta_File”, which implement a distributed file
system. The THETA File Manager provides functionality of conventional file systems, like
create, read, write, open, close, and remove. Clients can access file objects throughout the
THETA system.

File objects are not replicated and stay on the host on which they were created; in the THETA
terminology, this type is primal. In addition, file objects are stored entirely on a single host.
Large file objects cannot be split into pieces and then stored at different sites. (Programmers
can, of course, write managers and/or applications that provide this sort functionality.)
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For more detail on the specific operations, see the Software Design Document (SDD) for the
THETA File Manager and the Manager Skeleton [34]. The SDD for the THETA File Manager
describes the data types and operations that are particular to the THETA file services. The
SDD for the Manager Skeleton details data types and operations that are common to all man-
agers.

1.6.5 Application Managers

The application manager suite consists of managers that provide a user service rather than a
system service. The system managers provide services needed by the THETA system to oper-
ate correctly and safely. The application managers provide users with their required services
and functionality.

1.6.5.1 Account Manager

The Account Manager was created to test role-based access control policies using THETA’s
flexible access control mechanisms. The scenario is modelled after a “separation of duty” pol-
icy that one may find in a bank. Several distinct users must cooperate in order for cash
voucher to be honored. The Account Manager controls two types, a persistent object type
(account) and a transient object type (voucher). Voucher objects have a particular set of opera-
tions that must be performed in a certain order by specific privileged users. The Account Man-
ager uses many THETA mechanisms like MAC, DAC, ACLs, and AGSs to enforce this
complicated role-based access control policy. See [23] for a description of the manager and
the scenario.

1.6.5.2 Mission Planning and Tracking Managers

Trusted Information Systems developed a mission planning and tracking demonstration for
THETA. It is comprised of several managers listed below.

1.6.5.2.1 Bulletin Board Manager
The Bulletin Board Manager is part of the Mission Planning and Tracking demonstration
application that was developed by Trusted Information Systems. This manager behaves like a

mai] program, but a user can only post a message to one of the predefined groups. See [38] for
more information.

1.6.5.2.2 Downgrade Manager

The Downgrade Manager is part of the Mission Planning and Tracking demonstration applica-
tion that was developed by Trusted Information Systems. This manager submits bulletin board
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postings (that are managed by the Bulletin Board Manager) to the Regrade Manager to be
reviewed. See [38] for more information.

1.6.5.2.3 Logistics Database Manager

The Logistics Database Manager is part of the Mission Planning and Tracking demonstration
application that was developed by Trusted Information Systems. The database contains infor-
mation about Air Force missions, flight plans, legs of flights, drop sites, etc. See [38] for more
information.

1.6.5.2.4 Regrade Manager

The Regrade Manager is part of the Mission Planning and Tracking demonstration application
that was developed by Trusted Information Systems. This manager cooperates with the
Downgrade Manager and the Bulletin Board Manager in order to downgrade textual informa-
tion safely. For a piece of information to be successfully downgraded, a privileged user must
approve the submission. This privileged operation is regulated by the Regrade Manager. See
[38] for more information.

1.6.5.3 Inventory Manager

The Inventory Manager maintains a database of information about stock supplies.

1.6.5.4 Mail Manager

The Mail Manager allows users to send textual information to other users. This manager oper-
ates at a single level only.

1.6.5.5 Set Manager

The Set Manager handles groups of object identifiers. These groups, known as sefs, can con-
tain object identifiers of any type. Standard set operations may be performed on set objects.
For example, sets can be unioned and intersected, elements of a set can be added, deleted, etc.
Also, each set may contain elements from lower security levels, thus making a “multilevel”
‘object. Note that the object is not truly multilevel; the set object as a whole is marked at the
highest security level, but each component of the object maintains its original security mark-
ing.

1.6.5.6 Thing Manager

The Thing Manager is a simple manager that implements and tests the operations on the basic
object type “Object”. The “Object” type is the superclass of all other types; that is, all types in
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the THETA system inherit the attributes of the type “Object”. The Thing Manager is used for
verifying that the basic type and its operations are implemented correctly.

1.6.5.7 Tutorial Manager

The Tutorial Manager manages a test type created as part the Manager Developer Tutorial for
THETA [32]. This very basic manager helps demonstrate some of the features of the THETA
system and shows the developer some simple programming techniques of the system.
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1.7 Summary

As explained in the previous portions of this document, THETA is a distributed, heteroge-
neous, secure operating system. As a distributed system, THETA has increased extensibility,
availability, and resource sharing over centralized systems. Being heterogencous, THETA
provides greater availability to more hosts in a consistent manner. And, as a secure system,
THETA protects data confidentiality and integrity.

An operating system provides abstractions by which applications may use, share, and control
the resources of the underlying machine. THETA provides control of these COS resources in a
distributed manner. A distributed operating system presents its users and applications with a
set of uniform abstractions for the resources at multiple, independent processing locations.
THETA is a secure distributed operating system that permits access to resources only if this
access is consistent with a security policy.

THETA is intended particularly to support Air Force Command and Control (C?) applications,
though it is flexible enough to accommodate several other needs. C? applications provided
several challenges. First, C? applications span many types of computer systems and require
survivability, scalability, and interoperability. Second, they involve diverse aspects of the use
of classified information including collection, selection, aggregation and analysis. Last, these
applications involve monitoring and controlling physical devices that collect and use classi-
fied information.

Developing distributed services and applications is traditionally a very difficult exercise; how-
ever, THETA provides a suite of development tools that makes this task easier once they are
trained in the art of programming in a secure OS environment. Development time is reduced
since the programmer no longer needs to deal with the complexities of interprocess communi-
cation, interhost communication, data finding, access control, multitaskihg, and data storage.

THETA is an object-oriented environment by design. Because of its object-oriented nature,
many of the hard concepts of distributed processing are abstracted away from the user, pro-
grammer, and administrator. Accesses to objects and services are consistent across all plat-
forms on the THETA network.

1.7.1 Current Status

THETA is composed of several software components, a variety of hardware platforms, and
operating systems that are native to the various machines.

The software components consist of the kernel, which provides the message passing facility
between hosts and locally running processes; managers, which provide access to data objects
in a regulated manner; and clients, which make access requests on objects by way of invoking
operations on manager processes.
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The hardware platforms presently maintained include the HP 700 series, Sun SPARCStations,
and AT&T 386s. The processors used in these machine are PA-RISC chips, SPARC RISC
chips, and 386 chips, respectively.

THETA runs on a variety of platforms, both trusted and untrusted. Though untrusted operat-
ing systems cannot support THETA functionality at the B3 level, they can still be included in
a network of THETA machines as long as they are run at a single level. THETA is supported
on the following operating systems:

* HP-UX BLS 8.09+ - This system is designed to meet the TCSEC level B1. THETA
1.5 (excluding TNET) and 1.7b (excluding TNET) run on this system.

« HP-UX 8.09 - This system is an untrusted operating system and does not meet stan-
dards specified in TCSEC. THETA 1.5 (excluding TNET) and 1.7b (excluding TNET)
run on this system.

*  Sun CMW 1.0 - The Sun Compartmented Mode Workstation is designed to meet the
Compartmented Mode Workstation requirements, which are similar to requirements
for TCSEC B1 systems; however, Compartmented Mode Workstations have additional
criteria concerning windowing environments. See [43] in “References” on page 91.
THETA 1.5 (including TNET) and 1.7b (excluding TNET) run on this system.

* SunOS 4.1.X - This system is an untrusted operating system and does not meet stan-
dards specified in TCSEC. THETA 1.5 (including TNET), 1.7b (excluding TNET),
and 2.3 (excluding TNET) run on this system..

* AT&T System V MLS - This system is designed to meet TCSEC B1 criteria. THETA
1.3a (excluding TNET) runs on this system.

* Trusted Solaris 1.2 - This system is designed to meet TCSEC B1 criteria. THETA 2.3
(excluding TNET) runs on this system.

1.7.2 Future Plans

There are three major goals to be met in the long-term. We wish to create a successful demon-
stration and research testbed in the government community, to refine THETA to a production-
quality development environment, and to conform to emerging commercial standards on
object-oriented technology. .-

An immediate goal has been inspired by the Joint Directors of Laboratories (JDL) Security
Evaluation Program (SEP). THETA is becoming a rich demonstration and research testbed.
The framework is being put in place for each military service to produce their own THETA
services and applications with the goal of interoperating securely over a wide-area network
with the other military services. This experiment will demonstrate the feasibility of realistic
THETA applications and will test the usability of the THETA development environment.
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Development of THETA began as an experiment in secure distributed networking. We feel the
research has been successful; however, the resulting system is not yet polished enough to con-
sider it production-quality. To provide a foundation for the previously mentioned goal, we
plan to enhance the administrative tools to support multicluster operation of separate adminis-
trative domains. We also plan to increase large-scale wide-area network support in the areas of
secure database interfaces, auditing, replication, invocation tracking, multilevel atomic trans-
actions, and network packet encryption.

Last, we are working towards compatibility with commercial distributed computing stan-
dards. As a member of the Object Management Group, we are actively participating in defin-
ing security specifications for the Common Object Request Broker Architecture (CORBA)
[17]. Because THETA’s architecture and philosophy are very similar to CORBA’s, we believe
that a CORBA-compliant version of THETA is the logical next step. We foresee THETA-
CORBA interoperability to be an attainable goal, and with that, we achieve accessibility for
THETA within the commercial marketplace.

1.7.3 Published Papers

For more information on various aspects of THETA, this section lists the papers that have
been published as a result of the THETA research project.

e McCullough, D. “A Hookup Theorem for Multilevel Security”, IEEE Transactions on
Software Engineering, 16(6):563-568, June 1990.

« McCullough, D. “Foundations of Ulysses: The Theory of Security”, Technical Report
RADC-TR-87-222, Rome Air Force Development Center, May 1988.

« McEnerney, J., Weber, D., Browne, R., and Varadarajan, R. “Automated Extensibility
in THETA” Proceedings of the 13th National Computer Security Conference, October
1990.

e Pascale, R., and McEnerney, J. “Using THETA to Implement Access Controls for Sep-
aration of Duties”, Proceedings of the 17th National Computer Security Conference,
1994.

» Proctor, N., and Wong, R. “The Security Policy of the SDOS Prototype”, Proceedings
of the 5th Annual Computer Security Applications Conference, December 1989.

« Seager, M., Guaspari, D., Stillerman, M., and Marceau, C. “Formal Methods in the
THETA Kernel”, Proceedings of the Symposium on Research in Security and Privacy,
May 1995.

e Varadarajan, R., et al. “SDOS-An Overview”, 1989 Mission Critical Operating Sys-
tems Workshop, September 1989.

e Weber, D. G., and Lubarsky, R. S. “The SDOS Project - Verifying Hook-up Security”,
Proceedings of the 12th National Computer Security Conference, October 1989.

37




Wong, R., et al. “The SDOS System: A Secure Distributed Operating System Proto-
type”, Proceedings of the 12th National Computer Security Conference, October 1989. .

“Application of Formal Methods”, edited by Hinchey and Bowen, Prentice Hall, 1995,
pp. 285-306.
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2 THETA and CORBA Comparison

The Common Object Request Broker Architecture (CORBA) specification is a rapidly emerg-
ing standard that appears particularly relevant to THETA. In this chapter we provide a com-
parison of THETA and CORBA, and judge the potential for a CORBA-compliant THETA.
We first provide some background on the Object Management Group (OMG) and give an
overview of the Object Management Architecture (OMA). We then discuss THETA as an
example of an OMA and describe how THETA components map to the OMA. Next we com-
pare the evolving security requirements of CORBA with the THETA security architecture. We
then describe the steps required to develop a CORBA-compliant THETA, and conclude with a
discussion of the potential for such a system in non-DoD applications.

2.1 CORBA Overview

2.1.1 Object Management Group

The OMG, consisting of over 500 software vendors, software developers, and end users, is the
world’s largest software development consortium. All of the large computer vendors are rep-
resented, including IBM and Microsoft. The mission of OMG is to promote the development
of object technology for distributed computing systems. The goal of OMG is to provide a
common architecture framework for object-oriented applications based on widely available
interface specifications.

In 1991, the OMG released the first version of the CORBA specification, which defines the
architecture of the Object Request Broker (ORB). The ORB provides the interoperability
mechanisms that allow objects and applications to communicate in a heterogeneous distrib-
uted environment. The ORB is part of the overall OMA, as described in Section 2.1.2. The
ORB and OMA specifications continue to be refined and updated by adding new functionality
and features, including security.

Responding to a growing need for security in distributed systems, the OMG Object Services
Task Force Security Working Group released a Request For Proposal for CORBA Security
Services (known as OSTF RFP3) [15]. OSTF RFP3 has a very flexible view of security. The
OMG would like CORBA-compliant systems to be able to support a wide variety of security
policies, from high-assurance DoD access control to relatively weak mechanisms required in
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many commercial applications. The challenge of considering THETA in this context is to
investigate whether it is feasible for THETA to maintain its Trusted Computing Base (TCB)
architecture for providing assurance, yet still be interoperable with CORBA-compliant prod-
ucts.

2.1.2 Object Management Architecture

The OMA defines the overall OMG view of an object-based distributed environment [14]. As
shown in Figure 2-1, there are four main pieces to the OMA: the ORB, Application Objects,
Object Services, and Common Facilities. The ORB provides the uniform interface that allows
objects to interact regardless of the programming language, operating system, hardware, or
network. End-user application client and server programs are defined as Application Objects
within the OMA. The Object Services are the objects that perform low-level fundamental sys-
tem operations, such as namespace and persistence services. Object Services are typically
supplied by the ORB vendor. Finally, Common Facilities are application-level functions that
are common across many users, such as printing, databases, and compound documents.

Application Objects Common Facilities

Py —
| |
|

< Ob|ect Request Broker

)

|
(w\,

Object Services

Figure 2-1: Object Management Architecture

All communication among Application Objects, Object Services, and Common Facilities is
through the ORB. The structure of the ORB is shown in Figure 2-2. The ORB is responsible
for handling all requests that are sent by a client to an object implementation, as well as any
subsequent replies back to the client [17]. The ORB must find the appropriate object imple-
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mentation for the request, get the object implementation ready to handle the request, and then
ensure that the request data is transmitted to the object implementation.

o ) (o)
R

Dynamic IDL ORB IDL Object
Invocation Stubs Interface Skeleton Adapter
ORB Core

Figure 2-2: Structure of ORB Interfaces

For a client to make a request to an object implementation, the client can use either an Inter-
face Definition Language (IDL) stub or the Dynamic Invocation interface. An IDL stub is a
statically defined interface that is compiled into the client code. Clients can also access object
interfaces at runtime through the Dynamic Invocation interface to construct requests on the
fly. These object interfaces are stored in the Interface Repository. The object implementation
receives a request from the client in the form of an up-call through the IDL skeleton.

IDL defines the interface to objects by describing object operations as well as the parameters
to those operations. Tools supplied by the vendor along with the ORB translate IDL specifica-
tions into the IDL stubs for use by clients as well as the IDL skeletons for use by object imple-
mentations. In this manner, clients and object implementations can communicate through the
IDL-defined interface even when running on different platforms.

The object adapter provides the interface for ORB services to the object implementation.
ORB services provided by the object adapter typically include: handling of object references
(unambiguous object identifiers), method invocation, security, and registration, among others.
There may be many varieties of object adaptors to support various specialized object imple-
mentations, such as OO database adapters. The Basic Object Adapter (BOA) is available on
every ORB implementation and provides a general set of functions that are useful for many
object implementations.
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The ORB interface is the same for all ORBs and provides a direct interface to a few operations
that are common across all objects. These operations may be used by both clients and imple-
mentation objects.

The ORB core is the inner ORB component that moves the request from the client to the
object adapter that is appropriate for the target object implementation.

2.2 THETA as an Object Management Architecture

With the exception of THETA security mechanisms, the structure of THETA and CORBA are
very similar. In this section, we make a general comparison of THETA and CORBA function-
ality without considering the security of each architecture. We describe the mapping of
THETA components to the OMA. The general functional comparison in this section provides
the background to address THETA and CORBA security issues in Section 2.3.

The mapping of THETA components to the OMA is straightforward. Since both are distrib-
uted OO architectures that are designed to work in heterogeneous environments, they neces-
sarily contain many of the features. Furthermore, THETA is derived from BBN’s Cronus,

which in turn was driven by many of the same ideas that originally motivated the authors of
CORBA.

The basic object models of CORBA and THETA are identical. The concepts of clients,
objects, requests, types, interfaces, and operations are equivalent. CORBA object references
correspond to THETA unique identifiers. THETA objects are accessed through managers.
This implementation style corresponds to the CORBA BOA implementation style called the
persistent server activation policy. THETA also supports object replication, which is planned
for a future version of CORBA.

As described previously, the principle components of the OMA are the ORB, Application
Objects, Object Services, and Common Facilities. In THETA, ORB functions are provided by
a combination of the THETA Kernel, portions of the managers, and the Program Support
Library (PSL). OMA Application Objects correspond to THETA application clients and man-
agers (e.g., the Mission Planning and Tracking application implemented by Trusted Informa-
tion Systems). OMA Object Services correspond to several of the THETA system managers,
including the Authentication Manager, the Configuration Manager, the Directory Manager,
the Primal Process Manager, and the THETA File Manager. Both the OMA and THETA pro-
vide support for object persistence and name services. OMA Common Facilities correspond to
the application-level THETA system managers, such as the Audit Manager and Automatic
Code Generator (ACG) Manager.

The CORBA IDL is roughly equivalent to the THETA type and manager specifications.

Although the language syntax is different, both define object types, operations, and parame-
ters, and provide class inheritance. CORBA IDL supports multiple inheritance, while THETA
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type specifications provide single inheritance. IDL supports a number of mappings in imple-
mentation languages, while THETA specifications only map to C. Like CORBA, THETA
generates (using the ACG manager) client stub and object implementation skeleton code. The
ACG manager also provides a facility similar to the CORBA Interface Repository by making
object interfaces available at runtime. The mapping of the THETA architecture onto the ORB
interfaces is shown below in Figure 2-3.
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Figure 2-3: Mapping of THETA Architecture onto ORB Interfaces

CORBA object adapter and ORB interface functions are provided in THETA by a combina-
tion of THETA Kernel services and THETA library code. Within this code, services are pro-
vided for handling unique object identifiers, method invocation, security checks (discussed
further in the Section 2.3), and registration. Both CORBA and THETA support synchronous
remote procedure call (RPC) style invocations, although THETA also supports asynchronous
invocations (planned for a future version of CORBA).

Finally, the ORB core corresponds to the set of THETA Kernels running on various hosts,
which handle dynamic object location and transmission of the request from client to manager.

In summary, the architectures of CORBA and THETA are already very similar. The primary
differences are due primarily to choices in the style of interfaces rather than distinctions in the
conceptual object model.
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2.3 Security Requirements of CORBA vs. THETA

The greatest difference between CORBA as it now exists and THETA is in the area of secu-
rity. The current definition of CORBA is essentially silent on the topic of security. Although
some ORB vendors provide basic security mechanisms, there has been no consistent approach
to security within the OMA. The OMG recognized this serious deficiency, and as a result
released OSTF RFP3 [15], which asks for vendors to propose general solutions for security
within the OMA. A set of three submissions by major vendors and their partners were merged
into one security standard known as the CORBA Security Standard. The standard was voted
on and accepted in January, 1996. ORA’s role in the standard was to contribute to group dis-
cussions and to write two appendices--the conformance evaluation and vulnerabilities and
threats.

Although the security requirements for CORBA have not been conclusively defined, it is defi-
nitely not too early to plan how THETA security relates to CORBA. The existing submissions
for RFP3 are sufficiently similar that there is a good indication of what security means for
CORBA. Furthermore, THETA serves as an excellent yardstick for judging the adequacy of
CORBA security requirements. If a system similar to THETA cannot be implemented within
the CORBA guidelines, then we believe that CORBA will not be capable of supporting high-
assurance MLS policies. As a co-author of a submission for OSTF RFP3, ORA has already
used THETA as a guide to justify requirements for CORBA security features.

THETA can also drive CORBA security by continuing to stay at least one step ahead of the
security defined in existing OMG standards. By serving as a demonstration vehicle for
advanced security technology, THETA can help OMG avoid poor security design choices and
thus facilitate emergence of high quality commercial OO distributed security products.

In this section, we first give an overview of the direction of OSTF RFP3 and then describe

how THETA security relates to this evolving standard. We do not compare and contrast the

details of each of the OSTF RFP3 submission because these details are currently subject to -
change. Instead, we give general impressions of the security requirements of RFP3, particu-
larly as they relate to assurance.

2.3.1 Object Services Task Force RFP3

The philosophy of the final OSTF RFP3 submission is likely to emphasize flexibility. Consis-
tent with the approach of other OMG documents, RFP3 will be inclusive of many variations
of security architectures rather than exclusive. This style of specification is driven by market
demand—rvendors don’t want to be forced into highly constraining security architectures
because many end-users think that security gets in the way of accomplishing their work. At
the same time, vendors perceive that in many vertical markets (e.g., finance, healthcare) there
is a growing demand for better distributed security mechanisms, and they know that CORBA
must address these needs in order to be competitive.
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As a result, RFP3 submissions are described in terms of a security framework. The framework
is sufficiently general to allow confidentiality, integrity, accountability, and availability poli-
cies for a broad array of vertical markets. The framework provides this flexibility by allowing
customization of the access checking code within the ORB, Object Services, Client, and
Object Implementation. In this manner, the submission attempts to address both DoD MLS
security requirements as well as much less stringent requirements in areas such as business
automation.

An illustrative candidate security reference model is shown below in Figure 2-4. The model
depicted provides a simple framework for many different access control security policies.
This framework consists of two layers: an application access policy and an object invocation
access policy.
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Figure 2-4: CORBA Access Control Model

The application access policy governs the performance of object operations on behalf of cli-
ents. The application access policy is enforced within the client and/or the object implementa-
tion. If the client or object enforce such a policy, then that portion of the system is inherently
trusted to correctly implement and enforce the policy. Note that a valid instantiation of this
framework is for both client and object to be security unaware; in this case all mediation
would be performed by the ORB.

The object invocation access policy governs the delivery of messages between authenticated
clients and objects. This policy is enforced within the ORB although mediation decisions and
support may be carried out by other portions of the OMA, in particular the Object Services.
All instantiations of the security reference model place at least some trust in the ORB to
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enforce the object invocation access policy. Even in architectures where the access control
mediation occurs solely within the client and object, the ORB is still required to validate the
request parameters and ensure message delivery. Mediation of object replies is similar to
requests, so for simplicity we do not explicitly address replies as a special case.

The access control model shows the client invoking an operation as specified in the request R.
The client first tests the request against the application access policy (specified by the client’s
Access Decision Function, i.e., ADF jjen) before passing the request to the ORB. ORB, then

tests the request against the client side object invocation policy (ADF,,), and if the test suc-
ceeds, transforms R to R’ and passes the request R’ to ORBg_ ORB; then tests the request
against the server side object invocation policy (ADF,), and if the test succeeds, transforms
R’ to R” and passes the request R” to the object. The object finally tests the request R”
against the application access policy (ADF gp,jecy) before executing the method specified in the
request. By instantiating ADF j;ene, ADFpjeci, ADF,, and ADF, differently, this framework
could support many different policies. For example, ADF,, and ADF, could be defined to
enforce an MLS property in some systems, or an ACL access check in others.

The flexibility of a security framework comes at the cost of complexity. Although a flexible
architecture potentially allows developers to customize security for a wide variety of markets,
the complexity of this approach could increase ORB vendor cost and risk. For this reason,
most initial instantiations of CORBA security are likely to be systems with modest built-in
authorization and authentication controls.

In addition, a framework of this complexity could jeopardize applications requiring assurance
such as MLS. Typical security evaluation tasks, such as identifying the TCB boundary and the
security reliance on the underlying OS and network, could become very difficult when secu-
rity mechanisms are potentially distributed throughout the CORBA security architecture.

2.3.2 Relationship of THETA to CORBA OSTF RFP3

The CORBA security framework appears to be sufficiently general to support the THETA
security policy. The CORBA object access policy (ADF,. and ADF ) would support the
THETA MAC policy enforced by the THETA Kernel, while the CORBA application access
policy (ADFjjene and ADFgpjece) Would support the THETA DAC policy enforced by

THETA managers.

Our experience with the THETA architecture and its assurance argument is directly relevant to
the CORBA framework. In THETA, access checking code is carefully structured to minimize
trusted code while still allowing extensible application security policies. To have a valid archi-
tecture in CORBA, the same argument would need to be made. Thus, it must be possible to
structure the ORB so that it contains a minimum of trusted code. It must also be feasible to use
the protection mechanisms of the underlying operating system and hardware to demonstrate
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that this distributed TCB has all of the usual properties of a reference monitor: it must be
tamperproof, always invoked, and sufficiently simple to be subject to thorough test and analy-
sis. '

Although the OSTF RFP3 submission definitely does not require that this structure exist in all
CORBA security architectures, so far we have seen nothing in the RFP3 submissions that pro-
hibit this style of structure and analysis.

2.4 Steps to Reach a CORBA-Compliant THETA

CORBA compliance is the next logical step for THETA development. Proceeding in this
direction meets several objectives. As described earlier, THETA can encourage high quality
commercial OO distributed security products by serving as a demonstration vehicle for
advanced security technology. Given the strong commercial market motivation of OMG, it is
unlikely that any ORB vendors will be willing to risk the investment to build an MLS distrib-
uted ORB in the near term. THETA development may be the most effective way to demon-
strate: MLS distributed OS technology. CORBA compliance is major step toward
interoperation of THETA with commercial distributed systems, thus allowing experimenta-
tion with interoperability between trusted and untrusted domains. Finally CORBA compliance
will serve to mature the THETA environment. OO technology has evolved significantly since
it was used to produce Cronus and THETA. By building a CORBA-compliant THETA, we
will replace the OO model in THETA with the much more clean and elegant model contained
within CORBA.

In the remainder of this section, we outline the steps suggested to develop a CORBA-compli-
ant THETA.

2.4.1 Object Interface

The first phase of development would be to produce a CORBA-compliant interface as speci-
fied in [17] and OSTF RFP3. This effort would require interface modifications to the Kernel,
THETA libraries, and the ACG manager to match the CORBA interface specifications for the
Dynamic Invocation interface, the IDL stubs, ORB interface, IDL skeleton, and Basic Object
Adapter. As part of the ACG modifications, it may be feasible to use Sun’s public domain
front-end to parse CORBA IDL.

The largest part of this effort would be to update the existing THETA system and application
managers and clients to use this new interface. This effort would not be difficult, but it would
be very time-consuming due to the very large amount of existing manager code. Updates
should be prioritized to ensure that the most critical system managers (i.e., authentication and
primal process) are running first to allow early experimentation.
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The security policy enforced in this phase would be essentially identical to the current global
THETA DAC and MAC mechanisms.

2.4.2 Secure Interoperability

The second phase of this effort would be to address secure interoperability between a
CORBA-compliant THETA and a commercial ORB product. Because secure interoperability
standards are unlikely to be resolved within the RFP3 submission, this effort would serve as a
feasibility demonstration for OMG for how secure interoperability could be supported. The
interoperability protocol could be based either on extensions to the Internet Inter-ORB Proto-
col (IIOP) or the DCE Inter-ORB protocol [16]. The access control policy supported across
the ORBs would handle a fixed discretionary access control policy and mutual authentication.

2.4.3 Extensible Policies

The third development phase would be to support extensible authentication and authorization
policies, as well as multiple policy, trust, and technology domains. These capabilities will be
documented in the RFP3 submission, but early secure ORBs are unlikely to fully exercise this
capability. Extensible access policies would allow developers to tailor ORB security to spe-
cific applications. Security domains allow secure interoperation across separate enterprise and
administrative organizations. THETA development in this area would be to demonstrate to
vendors that such higher-risk implementations were feasible, thus encouraging faster develop-
ment of commercial ORB products designed for multipolicies.

2.5 Potential for THETA Use in Non-DoD Applications

THETA security policy is specifically designed to support high-assurance military applica-
tions. Commercial users are not likely to be willing to run on MLS platforms to obtain the
additional protection assurance that is available in that environment.

Although non-military use of THETA as it exists is doubtful, there are two principle ways that
THETA technology can support non-DoD applications. First, THETA technology can be used
to drive CORBA security, as discussed earlier. Because of the widespread interest in using
CORBA for commercial applications within the OMG user community, getting THETA secu-
rity mechanisms adapted within OMG is one of the most effective ways to result in non-DoD
use of THETA. Second, developing a CORBA-compliant THETA with an extensible policy
opens many avenues for commercial uses. By providing customized security services beyond
MLS (e.g., integrity, role-based access control) as well as interoperability to other ORB plat-
forms, THETA could serve as an “intelligent” firewall for restricting access between two ORB
domains.
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3

THETA and DCE

3.1

Introduction

THETA and the Open Software Foundation (OSF) Distributed Computing Environment
(DCE) [21] are both systems of distributed client/server application programs which can run
on a variety of underlying operating system and hardware. There are a number of overall sim-
ilarities between the two systems. Both consist of:

An Interface Description Language (IDL) and IDL tools which generate client and
server stub code;

Supporting servers which provide user authentication and object naming and location;

Supporting software which provides a Remote Procedure Call (RPC) infrastructure for
client/server communication, and which supports access control by encoding client
user identities;

Supporting server software which performs access control on objects;
Supporting server software which enables multi-threading;

A file server.

While THETA’s architecture does not specifically call out the above as components, DCE’s
architecture is more oriented toward these functional areas. DCE consists of the following
capabilities:

Remote Procedure Call (RPC): a runtime system consisting of library software that uses
network protocols and, optionally, an RPC server and security and directory services.
All DCE components interact with one another and with clients via RPC. DCE RPC is
compared with THETA in Section 3.5, along with the security and directory services.

“Security: a service consisting of two parts: the Security Server which allows clients and

servers to authenticate and obtain identifying credentials; and part of the RPC mecha-
nism whereby these credentials can then be passed in RPCs so that the recipient can
identify the sender. In the case of servers which perform access control, the client cre-
dentials are compared with the Access Control List (ACL) appropriate to the client’s
request. Security service is described further in Sections 3.4 and 3.5.

49




Directory Service: performs object name resolution and location for callers of RPCs.
Though not strictly required for RPC, Directory service is closely related to RPC, as
described in Section 3.2.

Distributed File System (DFS): The DFS is a DCE application built upon the infrastruc-
ture of the other DCE components. Unlike the other components which are interdepen-
dent to some degree, DFS is not used by any other component and as such is in principle
simply one of many possible distributed client/server applications built with DCE. The
THETA file manager has exactly the same role in THETA as DFS in DCE. It is not an
essential THETA server, in that THETA developers may, but need not, use the file
manager for storage service that is independent of COS-specific file service APIs. In
practice, DFS has not been widely used, partly because it is only just becoming fully
available, and partly because it is only just gaining commercial-quality robustness and
functionality. DFS has a richer set of functionality than the THETA file manager, due
to its evolution from the Andrew File System (AFS) and due to its commercial orienta-
tion. Such functionality includes: a separate local file system for efficient local access
and quick recovery; sophisticated client-side software for caching and cache consisten-
cy; file grouping for cloning, relocation, quota restrictions, backup/restore, and replica-
tion; and Unix file system interoperability. Although DFS’s replication mechanism is
not as flexible as THETA’s (DFS uses master/slave arrangement with a specific single-
image consistency policy) DFS replication is tuned to its other areas of functionality
(e.g., fault recovery, relocation). This document says no more about DFS.

Time: a service provided by the DCE time server, and client software for accessing the
server. The purpose is to provide a common time frame for servers on a common LAN.
DCE directory and security servers use time for coordinating and sequencing shared
computation. Time service is also available to new applications with common timing
needs. There is no comparable service in THETA, and THETA components have no
requirements for common time. This document says no more about the DCE Time ser-
vice. ’

Threads: a library which implements multiple threads of execution within one address
space. The DCE Thread package is largely based on POSIX Pthreads, but is intended
to provide a common API across multiple heterogeneous O/Ss, some of which may not
support Pthreads. The DCE Thread package is similar in function to THETA’s manager
tasking package, except that the latter is more tightly coupled to the THETA manager
architecture, and is used only in managers. DCE Threads are not an integral part of DCE
servers, but may be used by both clients and servers.

3.2 Object Naming, Location, and Invocation

The different object models of THETA and DCE are fundamental to other differences.
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In THETA, all a manager’s resources are divided among discrete objects which are separately
identified (using a globally unique identifier, or UID) and access controlled. As a separate
matter, objects may be given names; the directory manager keeps a mapping from items in a
usual hierarchical name space to the UID of each item. Accessing an object by name is actu-
ally two separate steps: first contacting the directory manager to obtain the UID of a name;
and second, using the UID to request an operation on the object. If a client already has the
UID, the first name resolution step is not necessary. The directory manager, of course, has no
name, and must be contacted via its UID. Such UlDs, which denote an entire type (as services
are called in THETA) are called generic UIDs.

THETA object location is entirely based on UIDs and hence is divorced from naming issues.
Object location is performed by the THETA kernel as part of its central function of switching
all messages from the sender to the recipient. Each THETA message has a UID as its target,
and the THETA kernel is responsible for locating the target object denoted by the UID. Some
location operations involve searching for the target object on other hosts, by sending location
messages to location components on other hosts. The resulting remote location data are kept
in a cache for later use. Therefore, the only location operations that require remote searching
are those in which the target object is not in the location cache.

However, the details of this location activity are invisible to THETA message senders. In
every case, the sender gives the message to the THETA kernel, which locates the target object
and forwards the message to the recipient associated with the target, e.g. the object manager
that manages the object denoted by the UID.

In DCE, naming and location are more tightly entwined. Each DCE service has both a hierar-
chical name and a globally unique identifier, or UUID. Thus a DCE service UUID is analo-
gous to a THETA generic UID. Below the service API, client stub code contacts the Cell
Directory Server (CDS) to determine how to contact a server that provides the desired service.
For the server that implements the RPC called by the client, the stub code specifies the server
by UUID. However, clients may also specify servers by name— for example, when using secu-
rity services.

Whether given a name or UUID, the CDS looks up the host-ID of a server running the
requested service. This host-ID is obtained not by searching for a host running the service, as
the THETA locator does. Rather, the CDS will have already obtained the host-ID from the
server itself: it is the responsibility of each DCE server to register itself with the CDS. The
CDS returns host-IDs to callers, which use the host-ID to contact a server directly. However,
the caller needs more information that the host-ID; it also needs a communication endpoint on
that host. Therefore the RPC caller consults the endpoint map on the host specified by the
CDS.

The endpoint map is maintained by the RPC server. The CDS and RPC server are separate

because endpoint mappings are specific to each individual host, and as a result, there must be
a RPC server on each host. The CDS’s mapping between names and hosts is, in contrast, glo-
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bally meaningful data, and as a result may kept by a single CDS rather than requiring a CDS
in each host. (Although CDSs may be replicated for high availability, the cost of a replica on
each host would outweigh the benefit in a but the smallest cells).

The nature of an endpoint is dependent on the network transport mechanisms supported by the
server. However, in most or all DCE implementations an endpoint is a TCP or UDP port. Hav-
ing obtained the endpoint, the caller can then connect to the server and send the RPC message
directly to it. In addition, the binding is retained so that subsequent messages can be sent
directly to the server without the intervention of the CDS and the RPC server.

Note that there must be a method for clients to bind to the RPC server, which in turns tells the
client how to bind to other servers. This is accomplished by the simple means of the RPC
server using a single well-known port; clients can bind to that port without any further infor-
mation.

In summary, there are several differences between DCE and THETA in the area of naming
and location:

* In THETA names and UlIDs are separately used, with only UIDs being relevant to
location of an object. In DCE both names and UIDs are identifiers used by the CDS.

* In THETA, there is a locator component on every host. In DCE the primary location
component, the CDS, runs only on one or a few hosts.

* In THETA, once an object has been located, the THETA kernel sends the message to
its destination, using THETA internal communication mechanisms built on common
network protocols. In DCE, the location is returned to the caller, which uses it to con-
tact the server directly using common network protocols.

* In THETA, each operation is targeted at a specifically identified object, which the
THETA kernel must locate in order to forward the operation message. Any optimiza-
tions of location processing (e.g. caching of location data) are the responsibility of the
THETA kernel. In DCE, services are named and located, but subsequent RPCs can be
targeted to a specific previously located server to which the client has a direct commu-

* nication channel. Optimizations of RPC traffic (e.g. caching of communication chan-
nels for later RPCs) are the responsibility of the DCE runtime software that is part of
every DCE client or server.

With respect to the last point, it should be pointed out that DCE servers may function as true
object managers in the manner of THETA, with individually named and uniquely identified
objects and with RPCs that implement operations on an object. Although this approach is sup-
ported by DCE’s notion of object UUIDs, this approach is not part of DCE mechanisms. Fur-
ther DCE support for an object model (similar to that of THETA) is provided by CORBA
systems built on DCE.
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Despite these differences in mechanism, both DCE and THETA provide the same basic func-
tionality of transparent distributed access to remote objects. In THETA, the transparency is
implemented by one component, the THETA kernel, which performs all location functional-
ity, hides from both the client and server their relative locations, and thereby hides the dynam-
icism of the distributed environment in which objects and/or services may move. The same in
true in DCE, but transparency is implemented by the combination of the RPC server, the CDS,
and the DCE runtime software’s use of them. That is, a DCE service’s client stubs (the equiv-
alent of THETA PSL calls) use a library of DCE runtime software both to call on the RPC
server and CDS to locate a server, and to send the RPC to the server. In THETA, the analo-
gous functionality is concentrated in the THETA kernel, which handles all location and mes-
sage transmission on behalf of THETA processes.

Appendix A provides a step-by-step summary of DCE location and invocation mechanisms,
and the relation to the use of credentials for secure RPCs.

3.3 Mandatory Policies and Communication

Another key point about DCE location is that it is not required for client/server communica-
tion via RPC. A client and a server may rendezvous by purely conventional means, e.g. by the
client’s including the knowledge of the server, and the server being available for binding at a
well-known port known to the client. CDS and RPC services merely provide a flexible com-
mon mechanism for clients to bind to servers, but any client/server application could imple-
ment its own mechanism.

Therefore, the most significant difference between DCE and THETA is that DCE has no
mechanism for mediating the communication between clients and servers, as there is in
THETA. Any attempt to add mediation functionality to the CDS and the RPC server would be
fruitless because of their optional role in client/server communication. In THETA, by contrast,

the THETA kernel switches all messages1 and implements a mandatory policy of information
flow.

Note that such an architecture is not the only means of implementing a mandatory policy.
Another approach is for client/server communication to be by means of protected capabilities
which are doled out by the TCB in accordance with a policy, but which can then be used for
direct communication. Such an approach is equally inapplicable to current DCE implementa-
tions, because endpoint bindings are simply numbers (TCP or UDP ports) rather than pro-
tected capabilities.

' An exception to message switching is direct connections between clients and servers, but the setup
of these is also mediated by the THETA kernel.
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Because of the lack of multi-level and/or capability-based network protocols to underlie cli-
ent/server communication, there does not appear to be any feasible means of performing
THETA-style message policies in a DCE system.

3.4 Access Control

Besides implementing a mandatory sensitivity policy on client/server communication,
THETA also provides similar mandatory and discretionary policies on objects, using label-
based and ACL-based access control mechanisms. As described above, DCE services need
not have a similar object model, so access controls of DCE servers need not be oriented
towards objects. DCE does provide a server framework which includes an ACL manager
component which can implement the responsibility for access controls based on ACLs. How-
ever, there is considerable latitude concerning what DCE ACLs specify the access to. Each
THETA ACL, in contrast, always describes access to a THETA object.

DCE does not have a general-purpose ACL manager. Different servers implementing different
services may need different types of ACLs, e.g. with different modes. If an application devel-
oper’s needs are not met by an existing ACL manager, then the application may need to
develop a new one. THETA, by contrast, has a single, general, extensible ACL component of
the general THETA manager skeleton. This ACL mechanism can be extended or customized
by statements in the THETA IDL e.g. those defining new access modes.

Additionally, DCE does not have a label-checking access control module analogous to the
ACL manager. However, the DCE ACL mechanism is general enough that a specific server
could implement an ACL manager that performs MAC checks as well. Note that such an
approach, applied to a DCE server that imposes access controls on a per-object basis, could
yield DCE servers that function in a manner similar to THETA MLS managers with a range of
system-low to system-high. However, because of the lack of message mediation, there is no
potential DCE equivalent of multiple single level (MSL) servers, or MLS servers with a lim-
ited range. (For MSL managers, THETA message mediation functions to constrain each indi-
vidual manager’s operation to a single level where mandatory mediation by the manager is not
needed. The same is true for limiting partial-range MLS managers’ operation to the range
within which it does perform mandatory mediation.)

3.5 Secure Remote Procedure Call

DCE security can be used with DCE RPC to implement a secure RPC mechanism that is sim-
ilar to messaging in THETA. Note, however, that security is an option; clients can choose
whether or not to authenticate their messages, and servers can choose whether to require that
messages be authenticated.
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As with THETA messages, DCE secure RPC messages contain information identifying the
sender of the message. In THETA messages, however, the sender identity is both unprotected
and implicitly vouched for by the THETA component sending the message. There are differ-
ent mechanisms for assuring the correctness of message sender identity, in local and network
messages. For THETA local messages, there is the assurance that the message was received
by the client or server from the THETA system itself, which is trusted with respect to correct
identification and authentication. For THETA network messages, assurance of correct sender
identity comes from application-level cryptographic protection. This protection ensures the
authenticity of the remote THETA system as the conveyor of the message, and ensures the
integrity of the message and the message sender indentity enclosed in it. Message privacy is
also an option, on a host-to-host basis.

Thus, correct message authentication and operation authorization depends on (a) secure oper-
ation of THETA on each host, to avoid local spoofing and snooping, and (b) secure key man-
agement and protection of each host’s cryptographic key used to ensure message security.

In other words, THETA uses authenticators (data that describes an identity) that consist of
some plaintext in THETA messages; THETA uses local host trust and host-to-host cryptogra-
phy to protect interhost message streams as a whole. Specifically, the plaintext is the UID of
the principal associated with a client request or server reply.

In contrast, DCE uses cryptographic authenticators in the manner of the Kerberos system.
Individual messages contain authenticators which can be subjected to cryptographic analysis
to determine veracity. In addition, the cryptographic techniques used to protect the message
authenticator may also be used to protect the privacy and/or integrity of the message as a
whole.

In other words, DCE uses message-level cryptography to protect individual authenticators
and, optionally, individual messages.

Note, however, that the security of DCE messages rests on storage of individual client session
keys in the local host operating system. The same is true of the THETA key which is used to

encrypt traffic between THETA kernels.? Fundamentally, both system’s security rests on the
ability of the host O/S to protect key data. The main difference is that with DCE the domain of
usage of each keys is much smaller, and the results of compromise more limited. That is, each
key stored on a client host is a session key for one client session. For THETA, each key is
used for traffic between all THETA kernels. In addition, the key management in THETA is ad
hoc.

Therefore, THETA’s cryptosyStem does not scale as well as DCE’s Kerberos approach
(although Kerberos has scaling problems as well). The two cryptosystems have comparable

2 Actually, there is more than one key. For each security level in the system, there is a key that all
hosts share to protect traffic at that level.
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risks with respect to reliance on a base O/S for key protection, but in THETA the risks become
more concentrated as systems scale up in size.

Appendix B provides a high-level summary of the cryptographic credentials that DCE uses as
authenticators. Appendix A describes how these are used in a typical scenario of DCE service
location and invocation.

3.6 DCE Mechanisms and THETA

Aside from the use of DCE’s Pthreads-based threads, little of DCE could be considered for
use in THETA because of fundamental differences in message authentication and object loca-
tion. It would not be possible for THETA to adopt DCE’s approach to object naming and loca-
tion, without foregoing the ability to enforce a mandatory policy on information flows
resulting from messages between parties of potentially different mandatory attributes.

However, there are some possibilities for THETA/DCE interoperation and/or THETA use of
DCE mechanisms in a limited way. Each of the following subsections provides a brief sketch
of one possibility and some of its key issues.

3.6.1 Kerberos User Authentication

One possible use of DCE technology in THETA is in the area of authentication. DCE has
extended the Kerberos framework of cryptographic authentication and service tickets to
include the notion of a more complex credential which identifies a user and vouches for addi-
tional security-relevant user data, such as group membership.

One new approach to THETA authentication would be to “Kerberize” THETA as a whole, so
that it uses a similar Kerberos-based approach to user authentication data in messages. Such a
change would replace the current THETA approach in which user and group data is encoded
in unprotected identifiers (THETA Principal and Access Group Set identifiers). The current
approach requires the cryptographically secure THETA-kernel-to-THETA-kernel communi-
cation provided by TNET, as part of a chain of authenticity from a server back to a remote cli-
ent: the COS allows local servers to have assurance of the authenticity of messages from the
local THETA server; TNET provides one THETA kernel with assurance of the authenticity of
messages from a remote THETA kernel; on such a remote host, the COS allows the THETA
kernel to have assurance of the identity of a client.

In a Kerberos-based approach, this chain of authenticity is replaced by the scheme in which
servers assurance of client identity is derived from the cryptographic credentials enclosed in
messages from the client. Thus, in a Kerberized THETA system, the THETA kernel would
still perform its required message mediation function, but would not be trusted to convey
authentication data. Rather, the THETA kernel would simply forward successfully mediated
messages with the sender’s credentials intact.
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The main new security issue in a Kerberized THETA would be the method by which THETA
processes obtain their credentials. DCE processes directly contact the security server to
engage in a dialog that results in the generation of credentials. Such direct dialog would be
problematic in THETA, for two reasons: first, THETA’s communication architecture requires
the THETA kernel to be the mediator of all communication; second, because of the non-MLS
nature of the existing DCE security server, and the multiplicity of sensitivity levels of THETA
processes requiring credentials. To cope with this situation, the intermediary role of the
THETA kernel would have be applied to communication between THETA processes and the
security server, in a manner which would be invisible to the security server. Essentially, the
THETA kernel (or some new, closely allied component) would have to act as a proxy for
THETA processes on its host, and use DCE security server client stub on behalf of these pro-
cesses; and it would have to perform downgrade and upgrade of information passing between
THETA clients and the security server.

Finally, note that even in a Kerberized THETA system, there would still be a requirement for
secure communication between THETA kernels. When a THETA kernel receives a forwarded
message from a remote THETA kernel, the message meta-data includes information that the
receiving THETA kernel needs to perform proper message mediation. This data must be
securely transmitted. To meet this security requirement, security could be provided either by
the current TNET approach, or by using Kerberos authentication on messages between
THETA ke